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THE JOURNAL OF SymsoLric Loaic
Volume 36, Number 3, Sept. 1971

MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC
LOS ANGELES 1971

A meeting of the Association for Symbolic Logic was held on March 25 and 26, 1971 at the
Beverly Hilton Hotel, Beverly Hills, California in conjunction with the annual meeting of the
American Philosophical Association, Pacific Division. The Council of the Association met at
dinner on Thursday.

Invited addresses were delivered by Professor Saharon Shelah on Any two elementarily
equivalent models have isomorphic ultrapowers and by Professor Dana S. Scott on A model theory
for the Acalculus. Professors Alfred Tarski and Yiannis Moschovakis presided over the two
invited addresses. On Friday an invited symposium on the topic, Rudolf Carnap, was held.
This symposium was cosponsored by the American Philosophical Association. The speakers
were Professors Carl G. Hempel, Jaakko Hintikka, and Richard C. Jeffrey. Professor Maria
Reichenbach presided over the symposium. The first twenty papers below were presented in
person, Professors Daniel Gallin, Jon Barwise, Herbert Enderton, Carl Gordon, Donald
Potts, Dana Scott, and I. Reznikoff presiding. The last six papers below were submitted by
title.

Professor Richard Montague served as Chairman of the Program Committee. The program
was completed before his death on March 7, 1971. DaviD KAPLAN

WELLS, GARDNER S. A calculus of contexts.

Many fields of study (e.g., sociology) need a method of interrelating noncoextensive contexts.
This calculus is sketched here, heuristically, as an approach to the problem. Because of its
extra-logical applications, symbols are limited to the standard keyboard.

Assume a class V with subclasses x, y, z, w, Xy, etc., for which N, U and ’ indicate class pro-
ducts, sums and complements. Let a, b, ay, etc., represent ordered pairs of subclasses. Using «»
for “represents”, and letting a « x;y, a; & X;; ¥y, and b <> z;w, various operations are defined
as follows:

—ae XY, #ae—> y;x and @a > y';x’.

&3y ca) > (X N+ N XYy Ve- VU yy) and

&(ay---an) & Xy NN Xp)3 (YL N N Y.

$(ay: - -ap) <> —&(—ay- - —ap) and $(a;-+ -ay) & —&(—ay- - —ay).

o+ &(a — a), ue> —0, 0+ &(a — a)and u e —o.

Sa:bex=zandy =w.

It is easily shown that:

(1) If each of P, Q and R is replaced by one symbol for complementation, no two the same,
S a::PPa, S PQa::QPa and S Pa::QRa.

) (~, &, 0) and (—, &, o) are distinct and complete Boolean algebras.

(3) In defining $, # may replace — ; the same holds for $ and @.

Further definitions of interest are:

a/be &(&(auw)$(bu))  (a/be x;w)

Ct’'a > $(a #a)/o ((x U y);V, termed the context of a).

In a forthcoming article this calculus will be presented as an independent system, requiring
only two primitive operators.

LesLANC, HuGUEs. Truth-value semantics for the modal logics QM, QS4, and QSS.

S being a set of functions from the atomic wffs of QM (von Wright’s M with quantifiers) to
{T, F}, « being a member of £, and R being a reflexive relation on R, take a wif 4 of QM to be
true on the triple <Z, «, R) if:

(i) in case A is atomic a(d =T

581
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582 ABSTRACTS OF PAPERS

(ii) in case A4 is of the sort ~ B, B is not true on <Z, a, R,

(iii) in case A is of the sort B © C, B is not true on <%, «, R) or Cis,

(iv) in case A4 is of the sort (VX)B, the result B(P/X) of putting P for X in B is true on
{Z, a, R) for every individual parameter P of QM, and

(v) in case A is of the sort 1B, B is true on <Z, «’, R) for every member «’ of X such that
R(a, a').

It can be shown that a wif 4 of QM is provable in QM if and only if A4 is true on every triple
{Z, e, R) of the sort just described. And like results obtain for QS4 (S4 with quantifiers) when R
is required to be transitive as well as reflexive, and for QS5 (S5 with quantifiers) when R is
required to be transitive and symmetrical as well as reflexive.

It is assumed here that the Barcan formula (provable in QS5) counts as an axiom of QM and
QS4. If a strong completeness proof for QM, QS4, and QSS is to be had, Z must be construed
as a sequence of indexed functions, and R as a relation on the indices of these assignments.

SUGAR, ALVIN C. A logical requiem for relativity.

This paper is concerned with the greatest scandal in the history of science. The theory of
relativity can be shown to be counter factual by an almost childish example. Let me, by way of
interjection, refer to a very appropriate legend. Procrustes was a celebrated legendary high-
wayman of Attica who tied his victims upon an iron bed and, as the case required, either
stretched or cut off their legs to adapt them to its length. A Procrustean bed refers therefore to a
theory to which facts are arbitrarily adjusted. Relativity is a Procrustean bed. Instead of fitting
the theory to the facts, the facts are fitted to the theory. I call for the substantial application of
logic and axiomatic procedures to physics. How can the physicists dare to construct theories
without the essential and modern tools required for their solid fabrication. The failure of rela-
tivity as a physical theory in turn collapses its parent theory, Maxwell’s electromagnetism, and
this in turn collapses another offspring of electromagnetism, namely, quantum dynamics. To
continue with my iconoclastic destruction, let me add that I reject the Michelson-Morley
experiment for it was born in bias and enshrined in contradiction. This extensive annihilation of
large portions of modern physics creates a vacuum into which we propose to erect my gene-
ralized unified field theory developed within the framework of strict axiomatization.

We alter Newton’s law of universal gravitation by adding two correction terms. These terms
have the effect of accounting for (1) the advance of perihelia in quasi-elliptical orbital motion and
(2) atomic repulsion. We formulate a modified Gauss-Bush invariant mass, variant charge
foundation of electrodynamics, which unlike Maxwell’s electromagnetism is compatible with
Newtonian dynamics. We give a more logical formulation of the molecular and the kinetic
theories of matter in terms of an explicit quantitative formulation of atomic repulsion. We
properly reduce my axiomatic formulation of thermodynamics to the kinetic theory of matter.
Of the many objections I have to relativity, I have elected to select the following as a crucial
defect and concentrate on it. When the points of light A and B move in opposite directions
from a source S, 4 to the left and B to the right, we must conclude, using the simplest accepted
laboratory techniques, that the rate of separation of these points is 2¢. This is inviolate—this is
fact. For that matter, to deny that this is fact is to deny the validity of any or all empirical pro-
cedures and hence the rationality of man. It is sheer insanity, then, for anyone to present us
with a theory that contradicts this basic empirical fact, a theory which requires that this velocity
be c. )

SELDIN, JONATHAN P. The paradox of Kleene and Rosser.

In their [IFL], Kleene and Rosser showed that the Richard Paradox can be set up in certain
systems of illative combinatory logic, and in his [PKR] Curry studied this paradox in detail for a
system with stronger postulates. In this paper it is shown that the paradox can be derived from
weaker postulates.

The most important of these postulates can be stated, using the notation of [CLg. II, §12B4]
and [SIC, §2A3], as follows: if M is a sequence of terms and if x is a variable which does not
occur (free) in M, X, or Y, then

1) M, Xx | Yx & Can, (X) > M} Xx >, Yx.
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Then the postulate of Kleene and Rosser [IFL] can be obtained by specifying that Can, (X)
holds just when there is a term U such that M F XU (so that the terms X such that Can, (X)
depends on M), and the postulate of Curry [PKR] is that obtained by assuming that Can, (X)
holds for all terms X.

In this paper, it is shown that if we begin with assumptions about Can, satisfied by the system
F 51 of [CLg. 11, §15B] (which can be proved to be consistent if the canonical terms are taken to
be the canobs of [CLg. II, §12B3]), and if we then assume in addition that there is a term T such
that Can; (7)) and

METX==ME X,

then we can, using (1), derive the paradox.

REfFeRENCES. [PKR] Curry, H. B., The paradox of Kleene and Rosser, Transactions of
the American Mathematical Society, vol. 50 (1941), pp. 454-516.

[CLg. II] Curry, H. B., HINDLEY, J. R., and SELDIN, J. P., Combinatory Logic, vol. 2. (To
be published in Amsterdam by North-Holland, probably in 1971).

[IFL] KLEENE, S. C. and ROSSER, J. B., The inconsistency of certain formal logics, Annals of
Mathematics, (2) vol. 36 (1935), pp. 630-636.

[SIC] SELDIN, J. P., Studies in illative combinatory logic, Dissertation, Amsterdam, 1968.

MOSIER, RICHARD D. Recursive functions and the tensor calculus.

A “primitive” recursive function such as Q(x) = x’ is read *‘the function of x is its succes-
sor”; but of course we have no way of knowing whether the ‘“successor” in question is x + 1,
xX+2,x+ 3, x+n

What is needed is a way of assigning particular values to the “successors” of the function
without impairing the generality of the function. For this purpose, we can use indices of the
function, for example,

Qe = A (Lk=1,23)

which indicates that we are dealing with a second-order recursive function in which there are as
many ‘“‘successors’’ of the function as there are “components” in the corresponding tensor
indices. .

Thus A’ is the “successor” of Q(x)yx, which in matrix form displays its “‘components” in
the following way:

A Ay Ais

Ayl = || Aax Az Azs

Az Aszz Ass
The matrix form of A’ indicates that the ‘“‘successors’ of a recursive function have been
transformed into the ‘“‘components’ of a recursive relation. But since the “components” of

A’y have been displayed in matrix form, perhaps, it is also possible to display the *“successors”
of Q(x)y in matrix form:

O0(x11 x12  X13)
O = | @Q(xa1 Xa3  X23)
O(x31 X3z X33)

Consequently, we note that (substituting / and m for i and k) the relation between Q(x),, and
A’y can be expressed in the following formulas:

Q') = apxy O(x'x) = GrmXm
) = apx’y  Q(Xm) = GermX'ie

By appropriate transpositions and substitutions, the formulas expressed above can be reduced
to:

A = ap18em Q(X)im.
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We observe in conclusion that the transformation of the ‘successors” of a recursive function
into the “components” of a recursive relation is the logical equivalent of a change of coordinate
systems, but the mutual (dialectical) recursiveness of the systems (formulas) permits us to
express the evolution of the systems of *“successors’’ and *‘components”’ as a recursive equilibra-
tion of the process of recursion, that is, as a recursive logic.

SINGLETARY, W. E. Representation of many-one degrees by partial propositional calculi.

M. D. Gladstone (Trans. Amer. Math. Soc., vol. 118 (1965), pp. 192-210), has shown that
every recursively enumerable degree of unsolvability can be represented by a partial implica-
tional propositional calculus (p.i.p.c.). Since it is a well-known result that not every r.e. many-
one degree can be represented by a first order theory the question as to what restricted degrees
can be represented by p.i.p.c. seems a natural. We have obtained the following rather surprising
result.

THEOREM. Given any arbitrary r.e. many-one degree d one can effectively construct a p.i.p.c.

with decision problem of degree d.
The proof utilizes a recent result (C. E. Hughes, Ross Overbeek and W. E. Singletary, Bulletin
of the American Mathematical Society, vol. 77 (1971), p.p. 462-472.) that every r.e. many-one
degree can be represented by a semi-Thue system. Given this result the construction and proof
follow rather closely those given by us in showing that every r.e. degree can be represented by
a p.i.p.c. (Journal of the Faculty of Science, University of Tokyo, XIV (1967), pp. 25-58).

HuGHES, CHARLES E. Representation of many-one degrees by Markov algorithms.

Markov algorithms, which were first defined by A. A. Markov in the early 1950’s, have been
extensively studied by both logicians and computer scientists, e.g., Mendelson [Introduction to
mathematical logic, Van Nostrand Co., Princeton, 1966] and Galler and Perlis [4 view of
programming languages, Addison Wesley, Reading, Mass., 1970]. In connection with these
systems a number of interesting questions arise as to the structure of the various general
decision problems associated with them. In particular, we have investigated the degree repre-
sentations of the general word, halting and confluence problems and have effectively shown that
every r.e. many-one degree of unsolvability may be represented by each of these. The technique
used to achieve this restilt is to demonstrate an effective procedure which, when applied to an
arbitrary Turing machine 7, produces a Markov algorithm whose word, halting and confluence
problems are of the same many-one degrees as the derivability, halting and confluence problems
for T, respectively. This, combined with the results of Overbeek [see the next abstract],
gives us the desired results. Moreover, we have shown this to be best possible in the sense that
every r.e. one-one degree of unsolvability may not be represented by any of these general
decision problems. Finally, as a direct corollary to this, we have that the class of Markov
algorithms is computationally equivalent to the class of total recursive functions, in that every
total recursive function is computable by a Markov algorithm which always halts.

OVERBEEK, Ross.  Representation of many-one degrees by the word problem for Thue systems.

Recent results (C. E. Hughes, Ross Overbeek and W. E. Singletary, Bulletin of the American
Mathematical Society, vol. 77 (1971), pp. 467-472.) have shown methods of representing any re-
cursively enumerable many-one degree by either the decision problems (halting, derivability,
and confluence) of Turing machines or the word problem for semi-Thue systems. One naturally
wonders whether the degree could also be represented by word problems of Thue systems. We
have shown the following result.

THEOREM. Given an arbitrary r.e. many-one degree d one can effectively construct a Thue
system whose word problem is of degree d.
The proof involves the construction of a Turing machine M whose confluence problem is of
degree d. A Thue system T is then constructed which simulates the operations of the Turing
machine closely enough to allow one to establish that the confluence problem of M and the
word problem of T are many-one equivalent.

SMITH, PERRY. Some special cases of Montague's recursion theory.
The standard analytic hierarchy of relations among numbers and infinite sequences is
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obtained by considering the definability of such relations in the structure with universe w U «®
and basic relations zero, successor, and function value, using the language of finite type theory
with all variables except individual variables ranging over hereditarily finite sets. A second
characterization is obtained by using countable sets instead of finite sets.

A recursion theory over the ordinals less than a given infinite cardinal m is obtained, in
which the only basic relation is the one holding between an ordinal and the set of all smaller
ordinals, and the variables of higher type range over sets hereditarily of power <m.

SoLoN, T. P. M. Composition and quantification.

Virtually all logicians agree that compositional arguments are not formally fallacious.
(A) Most writers prefer to list such arguments among the informal fallacies of ambiguity.
(B) Some even go so far as to deny that compositional inferences contain any error in reasoning
whatsoever.

My own view of the matter is that the advocates of (A) and (B) are mistaken. Consider the
following typical example of composition:

Every living thing has a mother. Hence there is some individual which is the mother
of every living thing.
In terms of quantification this translates into:

1. x)[Lx — (Ey)Myx]/ . (Ey)[(x)Lx = Myx].

This sort of argumentation is obviously formally invalid. Specifically it involves an illicit inter-
change in the scope of the universal and existential quantifiers. Since all instances of com-
position exhibit such a structure, they are formally fallacious, and so positions (A) and (B)
must be abandoned.

WOODRUFF, PETER W. A4 new approach to possible objects.

The standard approach to possible objects in contemporary modal logic is, in my opinion,
open to a number of philosophical objections. We present a new semantics based on the prin-
ciple that a simple property is ““true of’ a nonexistent object just in case it is true of that object
in all worlds in which the latter exists. This semantics can be shown to be consistent and com-
plete with respect to an appropriate deductive system. An interesting feature of the system is
that it provides a fruitful application for three-valued logic.

GALLIN, DANIEL. Systems of intensional logic.

Montague’s system IL (intensional logic) is a synthesis of Church’s theory of types with
modal logic, capable of treating such troublesome grammatical entities as intensional verbs,
adjectives and prepositions. Let e, ¢, s be distinct entities; the set T of types is the smallest set
such that (i) e, ¢ € T; (ii) if ¢, B € T then <{e, B>, <s, &) € T. Terms of type « are characterized as
follows: (i) variables or constants of type « (denumerably many) are terms of type «; (ii) if 4, B,
C, D are terms of types <a, B>, «, a, {s, «) respectively, and v is a variable of type vy, then [4B],
Av B, [B = C], "B, D are terms of typss B, <7, @, ¢, <s, @), a respectively. A model based on
nonempty sets D and ] is a system M = {(M,)aer, m) such that M, = D, M, = {0, 1}, M (4,55 =
MPMa, My oy = M., and m(c)(i) € M, when c is a constant of type « and i € L. Let J consist of
all assignments over M; i.e., functions ¢ mapping variables of type « into M, for all € T.
Given i € 1, p € J we define, for each term A of type «, a value V; ,(A) € M,. The clauses are the
usual ones, together with: ¥} o("B)(J) = V;,0(B) and Vi ,o( D) = V, o(D)i). A formula, or
term of type ¢, will always have value O or 1, and the notions of semantical consequence, etc.,
are as usual. The sentential connectives, quantifiers and modal operators can all be defined in
IL.

A Henkin-type completeness theorem is proved for IL, using generalized models. Several
alternative formulations of higher-order modal logic are described and compared with IL; in
one of these systems a natural prenex form theorem obtains.

PoweLL, WILLIAM C. An axiomatization of set theory with predication as a relation.
We consider another axiomatization of set theory. It is a first-order theory with equality,
the membership relation, a new binary relation called prediction, and a constant V. Sets are
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defined to be elements of ¥. Classes are defined to be collections of sets. The variables P, Q are
defined to range over classes. Thus, VP®(P) is short for

Vx(Vy(y € x =y € V) = O(x)).
Predication is denoted by juxtaposition, and we only consider classes on the left of predication.
The axioms are

(A) xeyeV-—>xeV,

(B) Vx € V(Pxe xeP), ’
(&) Vxe V(Pxe QOx)—>P = Q,
(D) Vx € VIQV¥(Qy « O(P; x, y))

where @ is a formula such that (i) all the free variables are displayed, (ii) the P’s are the only
variables occurring on the left in predication, (iii) all the P’s occur only on the left in predication,
and (iv) V does not occur.

Except for regularity, all the axioms of Zermelo-Fraenkel set theory are derivable in the theory.
Also the existence of indescribable and ineffable cardinals is derivable. If the theory is consis-
tent, then the theory plus V = L is consistent. The consistency of the theory can be established
assuming the existence of a 2-valued measurable cardinal. Moreover, the theory can be shown
to be consistent from assumptions consistent with V = L. Models of the theory are closely
related to Kunen’s notion of M-ultrafilter.

OLLMANN, L. TAYLOR. Operators preserving elementary equivalence.

Certain operators on relational structures (such as definable homomorphisms, direct unions,
reduced products, limit ultrapowers and the generalized products of Feferman and Vaught
(Fundamenta Mathematicae, vol. 47)) all preserve elementary equivalence. That is to say the
first order theories of the structures to which the operator is applied determine the first order
theory of the image structure.

A more general class of such operators preserving elementary equivalence is defined and a
subclass preserving elementary extensions is isolated.

The technique is to define a topology-like structure on the class of relational structures. The
operators are then defined to be those functions of relational structures with certain * continuity’’
properties. The proof that these operators preserve elementary equivalence uses a game theo-
retic characterization of elementary equivalence introduced by A. Ehrenfeucht.

Structure theorems are obtained which make the operators relatively easy to construct and
work with. They are closed under composition and frequently preserve equivalence with respect
to stronger languages. In fact they are readily altered to preserve equivalence in infinity lan-
guages.

GEISER, JAMES R. A formalization of Esenin-Volpin's proof theory with the aid of nonstandard
analysis.

In 1959 Esenin-Volpin presented to the Warsaw Symposium on the Foundations of Mathe-
matics a paper sketching a proof of the consistency of Zermelo-Fraenkel set theory (ZF).
Intuitively the idea was that very large sets among the heriditarily finite sets (HF) could be used
to instantiate the axiom of infinity, while the other axioms of ZF are modeled in HF as usual.
The distinction between small (or feasible) sets and very large sets can be partially formalized in
nonstandard analysis using finite sets versus pseudo finite sets. We proceed as follows. A proof
theory ¢, is developzd for the hereditarily finite sets over a set of n urelements along the lines of
Fitch including a Carnap’s rule: {A(s) | r any closed term} | VxA4(x). After extending these
constructions to a nonstandard integer n, a certain subcollection ¥gy < ¥, is chosen to repre-
sent Esenin-Volpin’s proof theory. Roughly speaking, a subset of the constant terms is singled
out to act as the *‘feasible” terms. A proof tree T of @, is in gy iff only feasible terms occur
in the subtree f‘ (of T) in which the Carnap’s rule has been restricted to {A(?) | tfeasible} F
VxA(x). (Note that terms may arise in the course of proving existential sentences in T). By
means of these ideas a nonclassical proof theory t# is developed. I is shown to be consistent
and closed under modus ponens as well as other derived rules, e.g. F# 4 V B<Fg 4 or
b B, kg 3xA(x) <> Fg A(r), t feasible, Fo 774 < A. The law of the excluded middle fails
in general. There are also F# proofs of the axioms of Pairing, Infinite Union, Powerset, Infinity
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and forms of Comprehension and Replacement. All X} true sentences of arithmetic are Fg
provable while there are # Fg-undecidable sentences.

GRANT, JOHN. Recognizable algebras of formulas.

L is a first-order language with equality and Ly is the diagram language for the structure .

Let I be a set of formulas of Ly. Then I is called a recognizable set of formulas if':

(1) the free variables in each ¢ € I are identical, -

(2) there is a test formula, T'(p), of L such that for a formula ¢ (with the proper free variables)
e e iff Fy T(9).

Consider such a I" as the domain of an algebra R. If

(3) each algebraic operation of R is expressible uniformly in the language L, and

(4) the equivalence relation ~, ¢ ~ 4 iff Fy ¢ & ¢, is a congruence relation in the algebra
R, then the quotient algebra R = R/~ is called a recognizable algebra of formulas.

The definition of a recognizable algebra is given in L. Let A and B be structures for L.
Ry and Ry are called corresponding recognizable algebras if their definitions are identical in L.

THEOREM. U = B iff for each pair of corresponding recognizable algebras Ry and Rg,
Rg = RB.

CoROLLARY. U = B iff each pair of corresponding recognizable algebras are equationally
equivalent.
The theorem and the corollary can be extended to L,,.

Let A be an algebra and 0 a congruence relation on A. 8 is called a recognizable congruence
relation if it is defined by a formula T'(x, y) of L.

THEOREM. A = B iff for every recognizable congruence relation 0, A0 = B/6.
This theorem can be extended to L,g.

PARsONS, CHARLES. Oit a number-theoretic choice schema. 1I.

As in [1], let Z, be elementary number theory with all elementary functions and only quanti-
fier-free induction. We consider the results of adding axiom schemata or -rules to Z,. Let FAC
be the schema

Vx < adyAxy = IcVx < aA(x, c,)

(c ranges over sequence numbers). Let IR and /A4 be the rule and axiom schema of induction
respectively. For any schema S, let SZ(SJ) be S restricted to Z,(I1,) formulae of Z,.

In (2], IRE,, is proved closed under IRT, ;. By applying the same relativization technique
to the proof of Theorem 2 of [1], we show that IRE,; + FACY is also closed under IRY, ;.
It follows that I4Z,, is properly stronger than IRE,, + FACE, since I4Z ., can easily be seen
not to be closed under IRZ, 5. The consistency of FACY can be proved in IRZ ;.

Combining this work with that of [1] and [2], we have properly between I4Z and I4Z ., two
incomparable systems, JRE,; and FACE, whose Lu.b. is still properly weaker than I4Z.,.
The other systems considered in [1] and [2] reduce to these.

REerrReNCES. [1] C. PARSONS, On a number-theoretic choice schema and its relation to induction.
A Kino, J. Myhill, and R. E. Vesley (eds.), Intuitionism and proof theory, Amsterdam,
1970, pp. 459-473.

2] , On n-quantifier induction (to appear in this JOURNAL).

SMORYNSKI, C. The undecidability of some intuitionistic theories of equality and order.

Let T be an intuitionistic theory and let M, be the intuitionistic monadic predicate calculus on
one predicate letter. For each formula A of M, define A to be valid in Tiff A’ is a theorem of T
for every instance, A", of A in the language of T.

The (obvious) completeness problem is to prove: A4 is a theorem of M, iff A is valid in T.
Since the provability of A implies its validity, the problem is reduced to proving: If 4 is not a
theorem of M, then some instance, 4’, of A4 is not a theorem of T. The natural effective com-
pleteness problem is thus: For each formula 4 of M;, an instance, A, of 4 must be effectively
found, such that, if 4 is not a theorem of M, then A’ is not a theorem of 7.,
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By the undecidability of M; (Maslov, Mints, and Orevkov), an effective completeness theorem
will yield the hereditary undecidability of the theory T—hereditary, since the completeness
theorem holds for all subtheories of T.

Effective completeness theorems are obtained for several intuitionistic theories of equality and
order, including:

(1) The theories of equality and normal equality on infinite domains. This is a minor im-
provement on Lifshits.

(2) The theory of an apartness relation, as described in Heyting, p. 49. (This result was
obtained jointly by R. Statman and myself.)

(3) The induction-free theory of successor, given by the axioms:

0% x',
X=y>sx=y
x# x'...’,

x # 0> Iy(x = y).
(The addition of induction or, equivalently, a decidable equality yields a decidable theory, as
shown by Lopez-Escobar.)
(4) The theory of dense linear order, obtained by adding the following to Scott’s axioms for

linear order (I, p. 195):

Iy(x < 3),

Iy < x),

Jz(x < y>2x<z<Yy).

It follows that Scott’s theory of linear order is undecidable. This settles his question (II, p.
237).

REFERENCES. HEYTING, AREND, Inmtuitionism, An introduction 2nd ed., North-Holland,
Amsterdam, 1966.

LirsHITS, V. A., Problem of decidability for some constructive theories of equalities, Studies in
constructive mathematics and mathematical logic, Part 1, Consultants Bureau, New York, 1969.

LoPEzZ-ESCOBAR, E. G. K., A4 decision method for the intuitionistic theory of successor, In-
dagationes Mathematicae, vol. 30 (1968), pp. 466-467.

MasLov, S. Yu., MINTS, G. E., and ORevKov, V. P., Unsolvability in the constructive predicate
calculus of certain classes of formulas containing only monadic predicate variables, Soviet
Math-Doklady, vol. 163 (1965), Translations, pp. 918-920.

Scotrt, DANA, Extending the topological interpretation to analysis. 1, Compositio Mathe-
matica, vol. 20 (1968), pp. 194-210. )

, Extending the topological interpretation to analysis. 11, Intuitionism and proof theory,
North-Holland, Amsterdam, 1970. '

DE JONGH, D. H. J. Disjunction and existence under implication in intuitionistic arithmetic.

By formalizing Kleene’s notion I' | A and the argument of Disjunction and existence under
implication in elementary intuitionistic formalisms, this JOURNAL, vol. 27 (1962), pp. 11-18, an
extension is obtained of the results in that paper to formulas of the form 4 — B vV C and
A — 3xB(x) with free variables. For each pair of formulas E, A of Heyting’s arithmetic a
formula E | 4 is defined with exactly the free variables occurring in E or A. It is then provable
that, if F E — A, then E| EF E| A. As a corollary it follows that, if F C — 3xA(x), with x not
free in C, then C| CF 3x(C — A(x)) and, for example, since always F °C| C, if F "C —
3IxA(x), then F 3x("C — Ax). In fact, it can be shown that, whenever C fulfills Harrop’s con-
dition (Concerning formulas of the types A— B V C, A — (Ex)B(x) in intuitionistic formal
systems, this JOURNAL, vol. 25 (1960), pp. 27-32) of not containing *relevant”’ occurrences of V
and 3, then, if F C — 3xA(x), also F 3x(C — Ax).

By means of a second slightly more complicated formalization a constructive proof is obtained
of the following assertion.

If £(B) is a propositional formula with only the propositional variable B and f(B) is not
provable in the intuitionistic propositional calculus, and, if furthermore A is a closed formula of
Heyting’s arithmetic, then I f(A4) implies F "4 or F "4 — A.

This content downloaded from 192.12.88.224 on Thu, 3 Oct 2013 13:58:57 PM
All use subject to JISTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

ABSTRACTS OF PAPERS 589

ScHoOTT, HERMANN F. Subject and predicate calculi.

A universe of discourse is considered in which atomic sentences have the form fa;. (Object
language symbols with numerical subscripts are designated by syntactical symbols of the same
form but with literal or no subscripts. Logical symbols including concatenation are used auto-
nomously.) The a, are elementary subjects designating things; the £; are elementary predicates
designating attributes. The variables g; and b, range over attributes and things, respectively.
. Symbols of the forms «; and x; are used respectively for classes and bundles.

The class calculus arises from the axioms and rules of the propositional calculus (PC)
together with those of the predicate calculus and the following definitional axioms:

((93))] .a € AbP = a/bP,

(C2) Qa€Ef=fa,

(C3) oy < o = Vb.be .1} SDbhe 78
((oZ)] Gy y=.Coy&eyca,
(CS) G‘U L7 Il Ab.be«:, \ bea,,
(C6) a,ﬁa,::\b.bea,&bea,,
CNH e M~ bea,

The bundle calculus is developed from the axioms and rules of PC and subject analogues of
those of the predicate calculus plus the following:

(Sn -f3 0gP = flgP,

(S2) f2a = fa,

(S3) X [Cx =Vggax>gox,
(S4) Xy~ X = WXy E Xy & Xy E Xy
(SS) x,LJx, ~ Og.gax, v gax,,
(S6) xMx; = 0g.gox, &g3x,
S7 Jx < g ~ gax.

A logic embodying both calculi requires additional axioms incorporating scope requirements :
(M1) a3 x = x/bbea, (M2) .x€a = afgg d x, which have useful corollaries: «a5a = aca
and .x € f = f3 x. A natural language interpretation, in which scope is indicated by commas,
has application in the analysis of zeugmas.

The logic can be extended to include an individual calculus of things such as that of Leonard
and Goodman and its mirror image a taxonomic calculus of attributes. The calculus of Good-
man’s Structure of Appearance can be subsumed into the bundle calculus.

The development of second order predicate (subject) calculi requires the introduction of
class (bundle) variables with quantification ranging over classes (bundles) in general.

MoSTOWSKI, ANDRZEJ. A transfinite sequence of w-models.

Denote by A, the system of 2nd order arithmetic as described in Mostowski-Suzuki, Funda-
menta Mathematicae, vol. 65 (1969), pp. 83-93. w-models of this sytem will be identified with
the families of their sets. We denote by M,, the *“principal” model containing all sets of in-
tegers and by F the family of all denumerable w-models which are elementarily equivalent to
M. A set C of integers is called a code of a denumerable family M of sets of integers if M
coincides with the family of sets C, = {m:2"2m — 1)e C},n = 1, 2,---. We say that MeN if
N contains a code of M.

Using methods similar to those of the quoted paper one shows the following

THEOREM. There exists a family F; < F with the properties: (i) If M, N € F, then either
M < Nand M e Nor N < M and N e M; (ii) the order type of the relation < in F is n where 4
is the type of rational numbers.

COROLLARY 1. There is a set of sets of integers which is ordered in type v by the relation * to
be hyperarithmetical in”.

COROLLARY 2. There is a family F, < F which is ordered in type 1w, by the relation e.

We say that an w-model M has property (P) if for every set X in M there is an w-model N
such that Xe N< M and Ne M.

COROLLARY 3. For every set X of integers there exists an w-model M in F such that X€ M
and M has property (P).
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ScHUMM, GEORGE F. Trees, bouquets, and extensions of S4.

We consider extensions of S4 by the axioms:

A. OO > 0p)>p)=>(@C0p>p),

B. O@=>0p)>p)>p,

Coo P12 0O(~p12 (P22 -+ (2 @ O(~pn @ (Og > OO,

D, p1 2 O(~p1 2 (p2 2+ (pn @ O(~pp 2 (g = Og): - M),

En. 090 Visi<yzom+1 O = py),
proving each such system decidable and to be complete relative to an appropriate relational
modelling. Of these systems, S4B, S4BD,;, and S4AC, are equivalent to Sobocinski’s Kl.1,
K1.2, and Zeman’s 54.04, respectively.

A relational model % = (W, R) is called a bouquet if W = XU U o€ With€. N X =
{x} and R the smallest reflexive and transitive relation on W such that 8 = <X, R X) is a
finite tree and R is universal on € for each x in Q, the set of endpoints of B. € is a blossom of
2 and the elements of ¥ ,. are its petals. We say that U is an n-bouguet if every branch of B is of
order type <n + 1.

THEOREM. S4A (S4AC,, S4AE,, S4AC,E,, S4B, S4BD,) is determined by the class of
finite bouguets (n-bouguets, bouguets whose every blossom contains at most m petals, n-bouquets
whose every blossom contains at most m petals, trees, trees whose every branch is of order type
<n+1).

COROLLARY. S4A = MN151<S4AC;, S4AC, = Ni1x1<S4AC,E,

S4AE, = N1 21<0S4AGC Ep,, and S4B = () <4 <S4BD,.

ScHuMM, GEORGE F. Finite limitations on some extensions of T.

The Feys-von Wright system T is known to be determined by the class of finite reflexive
relational models, while the class of finite reflexive and symmetric models determines its Brou-
wersche extension B. Letting T,, and B, be the results of enriching T and B, respectively, with
the Dugundji axiom

Oy = py)

1<si<ysontl

we show that T,(B,) is a proper extension of T,+1(B,+;) and

THEOREM. T,(B,) is determined by the class of finite reflexive (reflexive and symmetric)
relational models (W, R) such that for each w € W there are at most n elements x of W for which
wRXx.

CoRrROLLARY. T = 01 <i <le and B = ml <1 <GJB1'

Suppose S is any one of the following extensions of T: S4, S4.2, S4.3, S5, Sobocinski’s
S4.1, S4.4, K1, K2, K3, K1.1, K2.1, K3.1, K1.2, K3.2, Prior’s D, and Zeman’s S4.3.2, S4.04.
Then if S is extended with the Dugundji axiom, S, is a proper extension of S, ,; and

THEOREM. For each S there is a class C of finite relational models such that C determines S and
S, is determined by the class of n-element models in C.

COROLLARY. S = MN1<i1<0Si.

This generalizes an analogous result originally obtained for S5 by Scroggs (this JOURNAL, vol.
16, pp. 112-120) using the 2"-valued Henle matrices, and enables us to axiomatize several many-
valued matrices which have appeared in the literature. The K3.1,’s axiomatize the 2"-valued
matrices mentioned by Prior on pp. 15-16 of Time and modality, Oxford, 1957, while K1.2;
and K3.2; axiomatize eight-valued matrices constructed by Prior (Notre Dame journal of
Jormal logic, vol. 5, p. 299) and Zeman (ibid., vol. 9, p. 297). S4, axiomatizes a sixteen-valued
matrix due to Sobocinski (ibid., vol. 11, p. 350, matrix 10) and is deductively equivalent to his
system V1.

SEGERBERG, KRISTER. On the extensions of S4.4.

We use the terminology of [2]. For definitions of the modal logics mentioned below, see [1]
and [4]. We assume the identifications n = {0,1,---,n — 1} and & = {0, 1,--}. An index
(of length 2) is an ordered couple (1,, t5) such that #;, t, < w. Every index induces a frame
<U, R)>, namely that for which U={(mn:m=0&n<1t, or m=1&n <t} and
(m, m)R(m’, n') iff m < m’. A logic is said to have index (z,, t;) if it is determined by the frame
induced by (71, £3). A logic is an index logic if it has an index. It is clear that S5 has index w.
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Scroggs’s Theorem says, essentially, that the only proper extensions of S5 are the index logics
n, with n < o,

Using the index terminology the extensions of S4.4 can be completely described in a simple
manner; the chart gives the structure of the entire set of these extensions. As usual, a logic is
strictly weaker than another if it is connected to the other logic by a rising line. The intersection
of two logics is the strongest common sublogic. For every index logic its index is indicated. A
logic which is not an index logic is the intersection of two index logics, and is determined by the
two-element set of indices of these logics. Every extension of S4.4 is normal. The logics already
described in the literature are represented by filled spheres. Apart from S5 and its extensions,
they and their corresponding index or set of indices are:

S44 (I, w)

K4 (1,1)

Vi {(1,1),2

S4.7 {1, 1), w}.
{Note that by K4 is meant the system so designated by Sobociriski. In terms of [3], that system is
the same as S$4.3GA;.) There are no intercalary logics except where the lines are broken. In
particular, S4.7 is the strongest extension of S4.4 to be properly included in S5, and S4.7 is the
strongest common sublogic of X4 and S5.

)]

REFERENCES. [1] SCROGGS, SCHILLER JOE. Extensions of the Lewis system S5, this JOURNAL,
vol. 16 (1951), pp. 112-120.

[2] SEGERBERG, KRISTER. Decidability of S4.1, Theoria, vol. 34 (1968), pp. 7-20.

[31 , Two Scroggs Theorems, Forthcoming in this JOURNAL.

[4] SoBociNsk1, BoLesLaAw. Certain extensions of modal system S4, Notre Dame journal of
Jformal logic, vol. 11 (1970), pp. 347-368.
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WEBB, PHILIP. A4 pair of primitive rules for the sentential calculus.
The system:

/I p IE plalr
q y4
r Fq
Friglp r

is easily shown complete.

The sytem can be proved unique (with minor variants) using a tautology A, containing
C** C’'**s.t. if A’ is constructed from A4 by replacing C**, C’** by B, B’ where —(B < B)A’
is not tautologous; C**, C'** are constructed from C**, C"** as C*, C"! are from C;, C’;, and
C'*, C’** lie within > x/s in C**, C’**; C'* eX'(C') if i is odd or Z(C?) if i is even, and C"** is
similar but reversing ‘odd’ and ‘even’, and C', C” lie within >x/s in C'*, C"**; C!' =
C¥/-..|CS(C}*is a variable; n — 1 > x; group to right) or is got from it by replacing 1 or more
C}' by CjeZ(CY) if j is even or Z'(CY) if j is odd, and C” is similar but reversing ‘odd’ and
‘even’; Z(FE) is the sequence consisting of E and all WFFs got by writing E/G | E/H for E in an
earlier member, and X’(E) is similar but writing E/E| G (so if JeZ(E)J<E, and if Je
X'(E)E < J); and A satisfies other minor conditions. It can be shown that for almost any other
pair of natural-deductive rules where no variable lies within > x/s, 4 is not derivable. For the
rules must allow the reduction by 2 at a time of the number of /s within which C}* lies till it lies
within 0/s. So there must be a rule of detachment, with one premiss and one line of its conclusion
a single variable; whence it is easy to show the rules must resemble almost exactly those above.

WHERRITT, DR. ROBERT C. First-order equality logic with weak existence assumptions.

We formulate and prove completeness theorems for several classes of first-order logics with
equality and function symbols (including individual constants as O-ary function symbols)
whose existence assumptions diminish in strength from the standard ones (3x(x = t) is provable
for any term ¢) to the weakest ones (no existential formulas are provable). The semantics is
based on a generalization of Tarski’s notion of an interpretation called a semirealization in
which there is a nonvoid universe S, a domain D < S, and a semantimorphism o which associates
semantic objects with syntactical objects so that: (i) for each n-ary predicate letter P, oP < S™,
(ii) for each n-ary function letter f, of is a partial function from S* to S, (iii) there is a nonvoid
set R with D © R < Ssuch that free variables range over R while bound variables are restricted
to range within D, (iv) o restricted to formulas is a two-valued homomorphism with respect to
the logical functors. A semirealization Q is strong if D = R, and Q is called a full realization if
D = S and each of is a total function.

THEOREM 1. The standard propositional rules and axioms, the rule ¥Intro, the quantifier rules
F Vy(¥xA = A(y/x)) and Vx(A = B)} ¥xA = VxB, and the standard equality rules are all valid
in every semirealization. Conversely, every formula true in all semirealizations is provable by the
rules given above.

THEOREM 2.  Besides the rules and axioms above, YxA & A(y/x) is valid in the class of all strong
realizations. Conversely, every formula true in this class is provable from the rules and axioms
given above.

THEOREM 3. Besides the rules and axioms above, the rule VELim VxA F A(t/x) for every term t
is valid in the class of all full realizations. Conversely, any formula true in this class is provable
Jfrom the rules and axioms given above.
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